Experimental study of holographic generation of

fractional Bessel beams
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We demonstrate the experimental generation of a fractional Bessel beam by holographic means.

Such

fractional modes of Bessel beams possess an intrinsic opening gap across concentric intensity rings on
propagation. We also show that the opening gaps within the fractional modes are diffraction free for a
working distance while a fractional helical wave front is maintained. © 2004 Optical Society of America

OCIS codes:

1. Introduction

Both zero-order and higher-order Bessel beams are
well known as nondiffracting beams.! As a result,
they have been used for optical alignment, surveying,
and data storage. In recent years a new application
of Bessel beams has generated much interest in the
area of optical micromanipulation. In this field the
characteristics of the Bessel beams, one of which is
their self-reconstructing ability, have been fully ex-
ploited, as Bessel beams are able to trap multiple
microparticles separated in different planes.2 Apart
from the properties mentioned above, higher-order
Bessel beams possess an extra characteristic, which
is a helical phase wave front.3 This extra property of
the beams allows it to transfer orbital angular mo-
mentum to the microparticles. Bessel beams have
therefore been used for optical trapping and
guiding.4-6

It is known that axicons and holograms are two
common devices that can be used to produce Bessel
beams. With an axicon, when a plane wave passes
through a conical lens the beam will be transformed
into a zero-order Bessel beam.” Similarly, shining a
higher-order Laguerre—Gaussian beam through the
axicon then transforms the beam into a higher-order
Bessel beam.® The nondiffraction distance of the
Bessel beam is determined to a large extent by the tip
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angle of the axicon and by the beam size of the inci-
dent light shining onto the axicon. Such a method of
generating Bessel beams has high optical efficiency;
however, an axicon lacks flexibility and requires
stringent alignment. Furthermore, to produce a
higher-order Bessel beam it is necessary to generate
a corresponding-order Laguerre—Gaussian beam as
an incident wave front for the axicon.

Turunen et al.® reported a holographic method for
generating Bessel beams. A hologram can generate
the same phase values as the phase retardation pro-
duced by the axicon with which to reconstruct a zero-
order Bessel beam. Similarly, a hologram whose
phase simulates the superposition of the axicon
phase distribution and a higher-order helical phase
distribution can also generate a higher-order Bessel
beam.10:11  The holographic method gives much flex-
ibility in generating Bessel beams with various beam
coefficients and orders, and the system is simple and
compact.

However, the Bessel beams described above are
assumed to have integer orders; i.e., the amplitude of
the beam is an integer order of the Bessel function of
the first kind, and the helical phase order is also set
as the same integer. In this paper we investigate
the unique properties of fractional orders as used for
both amplitude and phase of the Bessel beams, to
which we refer as fractional Bessel beams (FBBs).

Computer-generated holograms, which are pro-
duced by some phase-retrieval algorithms, can mod-
ulate the phases of the incident beams to yield
predefined amplitude or phase distributions. How-
ever, it is difficult for a single computer-generated
hologram obtained by a phase-retrieval algorithm to
customize a reconstructed beam in amplitude and
phase simultaneously.

Recently we reported the dynamic generation of a



FBB by a spatial light modulator (SLM).12 The FBB
was generated by use of a simulated axicon with a
fractional helical phase. In this paper we propose a
method with which to utilize the amplitude of a
fractional-order Bessel function coupled with the ap-
propriate fractional order of a helical phase such that
the resultant FBB has high purity. We use an in-
terference method to generate the FBB. Such a
method is simple and cost effective, and it has been
applied widely to generate holograms.’?> With this
method we reconstruct a pure FBB, i.e., an amplitude
and a phase with the same order. The experimental
results demonstrate that the quality of the FBB in-
tensity patterns produced in this way are better than
that of patterns generated by the axicon-
approximation method.

2. Description of Fractional Bessel Beams

As we know, the complex amplitude of an nth order
Bessel beam on plane z = 0 mm is given by

E.,(p, $) = J (ap)exp(Find), (1)

where o/, is the nth Bessel function of the first kind,
p is the transverse spatial coordinate, ¢ is an azi-
muthal phase, and « is an adjustable constant of the
Bessel function, which represents the radial compo-
nent of the free-space wave vector of the beam.
When order n is an integer, the distribution is an
integer-order Bessel beam (IBB), but, if the order is
set to a positive fractional number, the distribution of
Eq. (1) will become a FBB.

Simply changing the value of n will cause the re-
sultant Bessel beam to possess different intensity
distributions. A higher-order Bessel beam, for inte-
ger values of n, will have a dark circular spot in the
center, and the outer concentric rings will remain the
same, whereas the fractional orders between two ad-
jacent integer orders of Bessel beams will have open-
ing slits with various widths. For clearer
observation, we chose a much higher-order Bessel
beam, n = 4.5 with which to demonstrate the prop-
erties of the FBBs. The intensity profile and the
phase distribution of the beam on plane z = 0 mm are
shown in Fig. 1. The size of the beam is approxi-
mately 3.84 mm by 3.84 mm. Parameter « in JJ,, is
given as 13 1/mm.

The intensity and the phase distributions of an IBB
with n = 4 are shown in Fig. 2 and have the same
parameters as FBB shown in Fig. 1, except for the
order.

It can be seen from Figs. 1 and 2 that the two
intensity profiles are similar, except for the sizes of
the central dark spots. Their intensity rings are
fully closed, with no opening. However, their phase
distributions are much different. The 4th-order
Bessel beam has eight arc sections distributed evenly
from the innermost to the outermost ring. The frac-
tional beam, however, has nine arc sections. In the
central parts of the two phase patterns there are four
arms distributed evenly in the IBB, whereas there
are four arms and one incomplete arm in the FBB.

Fig. 1. FBBatz = 0 mm and n = 4.5: (a) intensity, (b) phase.

The intensity differences between the FBB and the
IBB can be clearly observed as the beam propagates
in free space. We can calculate their distributions at
a propagation distance z by using the Fresnel diffrac-
tion integral.’# The FBB and the IBB on the plane
z = 300 mm are shown in Fig. 3. The outer rings in
Fig. 3 appear rather square because of the tailored
square beam profile in the simulation.

In Fig. 3 the FBB has radial gaps in its concentric
intensity rings, whereas the IBBs are fully closed
rings. However, the sizes of the intensity rings are
nearly unchanged, and more simulations and exper-
iments showed that both kinds of rings are diffraction
free within this distance.

3. Holographic Generation of Fractional Bessel Beams

To produce a FBB experimentally, we caused inter-
ference between a reference plane wave and a desired
FBB to generate a hologram. The hologram’s phase
data were then loaded in a SLM. Thus, when a
reference plane wave was incident upon the SLM, the
object was reconstructed. To verify the simulation
result, we continued to use the FBB (n = 4.5) and a
plane wave to generate the hologram. To separate
the reconstructed images of different orders, we used
an oblique plane wave {p = exp[i2m(x/d)3], where &
is an adjustable constant that was set as 121 here. d
is the pixel width of the SLM} to be the reference
light. The resultant hologram is shown in Fig. 4.
The phase data of the hologram were subsequently
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Fig. 2. IBBatz = 0 mm and n = 4: (a) intensity, (b) phase.

saved as a gray-scale image file. The different gray
scales of the image correspond to different phase val-
ues. We then used a SLM to reconstruct the FBB.
The SLM from the Boulder Nonlinear System?!5 is a
nematic type that works on reflection, which can have
more than 64 phase strokes. A schematic of the re-
construction system is shown in Fig. 5.

Figure 5 shows a He-Ne laser beam with wave-
length 632.8 nm expanded by a collimation system
and then projected onto a SLM screen. The loaded
hologram data in the SLM have 512 by 512 sampling
points, and each pixel size of the SLM is 15 pm by 15
pm. The hologram has been quantized to 32 levels.
The reflected light is received by a Beamstar-1500
CCD beam profiler. We measured the reconstructed
patterns at different distances from the beam pro-
filer. The intensity profiles of the beam are shown in
Fig. 6.

The overall sizes of the patterns in Fig. 6 are ap-
proximately 3.84 mm by 3.84 mm. The intensity
profiles observed in the form of an elliptical shape in
the figures are due to the aspect ratio of the CCD
camera. The FBB is diffraction free along the prop-
agation distance from z = 0.3 to z = 0.5 m, as shown
in Figs. 6(a) and 6(b), which is considered long
enough for a micromanipulation application. The
IBB’s nondiffracting distance with the same beam
parameters is ~0.7 m. Beyond the nondiffraction
range the size of the innermost ring is almost un-
changed at z = 0.6 m and z = 1.0 m in Figs. 6(c) and
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(b)
Fig. 3. Diffraction intensity distributions of the FBB and the IBB:
(a) FBB of n = 4.5 at z = 300 mm, (b) IBB of n = 4 at z = 300 mm.

6(d), but the orientation of the openings rotates with
the beam’s propagation. Such rotation of the optical
beam’s intensity has been attributed to the helical
wave front of the beam.¢

To further illustrate the existence of the helical
phase of the FBBs we employed the method of inter-
ference between two FBBs of opposite helicity such
that we could observe their phases. Hence, two dif-
ferent diffracted orders (the first and the minus first
of the hologram) of the 4.5th-order Bessel beam were
redirected by a Michelson interferometer!? to inter-

Fig. 4. Hologram produced by the interference of the FBB of n =
4.5. The gray scales represent different phase values. The
phase is quantized into 32 levels.
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Fig. 5. Schematic of the experimental setup.

fere on the plane at a distance z = 1 m from the SLM
plane. Simulations of the interference of the IBBs
and the FBBs are presented in Figs. 7(a) and 7(b),
respectively. In the experiment the interference
fringes were recorded by a CCD camera; they are
shown in Fig. 7(c). The interference fringes from
n = 4 through n = —4 are shown in Fig. 7(d).

It can be seen from Fig. 7 that both interference
patterns have forklike fringes, which confirms the
existence of helical azimuthal phase variations in
FBBs and IBBs. For the IBBs it was proved that the
helical phase induced an orbital angular momentum.
This could provide an analogy with the FBBs. In
Figs. 7(a) and 7(b) the brightest rings in both patterns
are composed of many petals, but one of the petals in
the FBB caused by the FBB’s fractional helical wave
front is not observed clearly in the figure because of
the fractional Bessel amplitude of the fractional
beam.
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Fig. 6. Reconstructed FBB intensity patterns at several distances
z from the SLM, n = 4.5: (a)z=0.3m,(b)z =0.5m, (¢c)z = 0.6
m, (d)z = 1 m.

(©) ()

Fig. 7. Interference patterns at z = 1 m: (a) simulation of in-
terference, n = 4.5 and n = —4.5, (b) simulation of interference,
n =4 and n = —4, (c) experimental interference, n = 4.5 and n =
—4.5, (d) experimental interference, n = 4 and n = —4.

4. Conclusions

In conclusion, we have shown experimentally the
propagation of fractional Bessel beams, especially of
order 4.5, by holographic means. We have also
shown that the reconstructed FBB not only is diffrac-
tion free but also maintains its helical phase wave
front. Moreover, we demonstrated that the opening
slit in its concentric intensity rings is distinctly dif-
ferent from that of the integer-order Bessel beams.

We have shown a clear and simple method of ob-
taining a FBB by using a single optical element. Ex-
perimental generation of the FBB has been shown to
be in good agreement with the simulation results.

The main use of a FBB can best be described as its
use as a dark optical trap for confining neutral at-
oms.>¢ Rhodes et al.> have shown that the obstructed
guide, which creates artificial openings, increases
coupling efficiency. They also mentioned that
higher coupling efficiency into an obstructed
Laguerre—Gaussian beam and a high-order Bessel
beam can be achieved, for instance, by dropping a
magneto-optic trap cloud under gravity into an
oblique guide.

Hence it is not difficult for us to see the FBB’s
potential usefulness for trapping neutral atoms.
The openings from the FBB create a clear opening in
a hollow beam with a diffractionless distance that is
not easily attainable by other means. Hence this
FBB can be a great alternative to the obstructed
guide of Rhodes et al.5
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