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xperimental study of holographic generation of
ractional Bessel beams

hao Hua Tao, Woei Ming Lee, and Xiaocong Yuan

We demonstrate the experimental generation of a fractional Bessel beam by holographic means. Such
fractional modes of Bessel beams possess an intrinsic opening gap across concentric intensity rings on
propagation. We also show that the opening gaps within the fractional modes are diffraction free for a
working distance while a fractional helical wave front is maintained. © 2004 Optical Society of America
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. Introduction

oth zero-order and higher-order Bessel beams are
ell known as nondiffracting beams.1 As a result,

hey have been used for optical alignment, surveying,
nd data storage. In recent years a new application
f Bessel beams has generated much interest in the
rea of optical micromanipulation. In this field the
haracteristics of the Bessel beams, one of which is
heir self-reconstructing ability, have been fully ex-
loited, as Bessel beams are able to trap multiple
icroparticles separated in different planes.2 Apart

rom the properties mentioned above, higher-order
essel beams possess an extra characteristic, which

s a helical phase wave front.3 This extra property of
he beams allows it to transfer orbital angular mo-
entum to the microparticles. Bessel beams have

herefore been used for optical trapping and
uiding.4–6

It is known that axicons and holograms are two
ommon devices that can be used to produce Bessel
eams. With an axicon, when a plane wave passes
hrough a conical lens the beam will be transformed
nto a zero-order Bessel beam.7 Similarly, shining a
igher-order Laguerre–Gaussian beam through the
xicon then transforms the beam into a higher-order
essel beam.8 The nondiffraction distance of the
essel beam is determined to a large extent by the tip
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ngle of the axicon and by the beam size of the inci-
ent light shining onto the axicon. Such a method of
enerating Bessel beams has high optical efficiency;
owever, an axicon lacks flexibility and requires
tringent alignment. Furthermore, to produce a
igher-order Bessel beam it is necessary to generate
corresponding-order Laguerre–Gaussian beam as

n incident wave front for the axicon.
Turunen et al.9 reported a holographic method for

enerating Bessel beams. A hologram can generate
he same phase values as the phase retardation pro-
uced by the axicon with which to reconstruct a zero-
rder Bessel beam. Similarly, a hologram whose
hase simulates the superposition of the axicon
hase distribution and a higher-order helical phase
istribution can also generate a higher-order Bessel
eam.10,11 The holographic method gives much flex-
bility in generating Bessel beams with various beam
oefficients and orders, and the system is simple and
ompact.

However, the Bessel beams described above are
ssumed to have integer orders; i.e., the amplitude of
he beam is an integer order of the Bessel function of
he first kind, and the helical phase order is also set
s the same integer. In this paper we investigate
he unique properties of fractional orders as used for
oth amplitude and phase of the Bessel beams, to
hich we refer as fractional Bessel beams �FBBs�.
Computer-generated holograms, which are pro-

uced by some phase-retrieval algorithms, can mod-
late the phases of the incident beams to yield
redefined amplitude or phase distributions. How-
ver, it is difficult for a single computer-generated
ologram obtained by a phase-retrieval algorithm to
ustomize a reconstructed beam in amplitude and
hase simultaneously.
Recently we reported the dynamic generation of a
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BB by a spatial light modulator �SLM�.12 The FBB
as generated by use of a simulated axicon with a

ractional helical phase. In this paper we propose a
ethod with which to utilize the amplitude of a

ractional-order Bessel function coupled with the ap-
ropriate fractional order of a helical phase such that
he resultant FBB has high purity. We use an in-
erference method to generate the FBB. Such a
ethod is simple and cost effective, and it has been

pplied widely to generate holograms.13 With this
ethod we reconstruct a pure FBB, i.e., an amplitude

nd a phase with the same order. The experimental
esults demonstrate that the quality of the FBB in-
ensity patterns produced in this way are better than
hat of patterns generated by the axicon-
pproximation method.

. Description of Fractional Bessel Beams

s we know, the complex amplitude of an nth order
essel beam on plane z � 0 mm is given by

E�n��, �� � Jn����exp��in��, (1)

here Jn is the nth Bessel function of the first kind,
is the transverse spatial coordinate, � is an azi-
uthal phase, and � is an adjustable constant of the
essel function, which represents the radial compo-
ent of the free-space wave vector of the beam.
hen order n is an integer, the distribution is an

nteger-order Bessel beam �IBB�, but, if the order is
et to a positive fractional number, the distribution of
q. �1� will become a FBB.
Simply changing the value of n will cause the re-

ultant Bessel beam to possess different intensity
istributions. A higher-order Bessel beam, for inte-
er values of n, will have a dark circular spot in the
enter, and the outer concentric rings will remain the
ame, whereas the fractional orders between two ad-
acent integer orders of Bessel beams will have open-
ng slits with various widths. For clearer
bservation, we chose a much higher-order Bessel
eam, n � 4.5 with which to demonstrate the prop-
rties of the FBBs. The intensity profile and the
hase distribution of the beam on plane z � 0 mm are
hown in Fig. 1. The size of the beam is approxi-
ately 3.84 mm by 3.84 mm. Parameter � in Jn is

iven as 13 1�mm.
The intensity and the phase distributions of an IBB
ith n � 4 are shown in Fig. 2 and have the same
arameters as FBB shown in Fig. 1, except for the
rder.
It can be seen from Figs. 1 and 2 that the two

ntensity profiles are similar, except for the sizes of
he central dark spots. Their intensity rings are
ully closed, with no opening. However, their phase
istributions are much different. The 4th-order
essel beam has eight arc sections distributed evenly

rom the innermost to the outermost ring. The frac-
ional beam, however, has nine arc sections. In the
entral parts of the two phase patterns there are four
rms distributed evenly in the IBB, whereas there
re four arms and one incomplete arm in the FBB.
The intensity differences between the FBB and the
BB can be clearly observed as the beam propagates
n free space. We can calculate their distributions at
propagation distance z by using the Fresnel diffrac-

ion integral.14 The FBB and the IBB on the plane
� 300 mm are shown in Fig. 3. The outer rings in
ig. 3 appear rather square because of the tailored
quare beam profile in the simulation.
In Fig. 3 the FBB has radial gaps in its concentric

ntensity rings, whereas the IBBs are fully closed
ings. However, the sizes of the intensity rings are
early unchanged, and more simulations and exper-

ments showed that both kinds of rings are diffraction
ree within this distance.

. Holographic Generation of Fractional Bessel Beams

o produce a FBB experimentally, we caused inter-
erence between a reference plane wave and a desired
BB to generate a hologram. The hologram’s phase
ata were then loaded in a SLM. Thus, when a
eference plane wave was incident upon the SLM, the
bject was reconstructed. To verify the simulation
esult, we continued to use the FBB �n � 4.5� and a
lane wave to generate the hologram. To separate
he reconstructed images of different orders, we used
n oblique plane wave �p � exp	i2
�x�d���, where �
s an adjustable constant that was set as 121 here. d
s the pixel width of the SLM
 to be the reference
ight. The resultant hologram is shown in Fig. 4.

The phase data of the hologram were subsequently

ig. 1. FBB at z � 0 mm and n � 4.5: �a� intensity, �b� phase.
1 January 2004 � Vol. 43, No. 1 � APPLIED OPTICS 123
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aved as a gray-scale image file. The different gray
cales of the image correspond to different phase val-
es. We then used a SLM to reconstruct the FBB.
he SLM from the Boulder Nonlinear System15 is a
ematic type that works on reflection, which can have
ore than 64 phase strokes. A schematic of the re-

onstruction system is shown in Fig. 5.
Figure 5 shows a He–Ne laser beam with wave-

ength 632.8 nm expanded by a collimation system
nd then projected onto a SLM screen. The loaded
ologram data in the SLM have 512 by 512 sampling
oints, and each pixel size of the SLM is 15 �m by 15
m. The hologram has been quantized to 32 levels.
he reflected light is received by a Beamstar-1500
CD beam profiler. We measured the reconstructed
atterns at different distances from the beam pro-
ler. The intensity profiles of the beam are shown in
ig. 6.
The overall sizes of the patterns in Fig. 6 are ap-

roximately 3.84 mm by 3.84 mm. The intensity
rofiles observed in the form of an elliptical shape in
he figures are due to the aspect ratio of the CCD
amera. The FBB is diffraction free along the prop-
gation distance from z � 0.3 to z � 0.5 m, as shown
n Figs. 6�a� and 6�b�, which is considered long
nough for a micromanipulation application. The
BB’s nondiffracting distance with the same beam
arameters is �0.7 m. Beyond the nondiffraction
ange the size of the innermost ring is almost un-
hanged at z � 0.6 m and z � 1.0 m in Figs. 6�c� and

Fig. 2. IBB at z � 0 mm and n � 4: �a� intensity, �b� phase.
24 APPLIED OPTICS � Vol. 43, No. 1 � 1 January 2004
�d�, but the orientation of the openings rotates with
he beam’s propagation. Such rotation of the optical
eam’s intensity has been attributed to the helical
ave front of the beam.16

To further illustrate the existence of the helical
hase of the FBBs we employed the method of inter-
erence between two FBBs of opposite helicity such
hat we could observe their phases. Hence, two dif-
erent diffracted orders �the first and the minus first
f the hologram� of the 4.5th-order Bessel beam were
edirected by a Michelson interferometer17 to inter-

ig. 3. Diffraction intensity distributions of the FBB and the IBB:
a� FBB of n � 4.5 at z � 300 mm, �b� IBB of n � 4 at z � 300 mm.

ig. 4. Hologram produced by the interference of the FBB of n �
.5. The gray scales represent different phase values. The
hase is quantized into 32 levels.
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ere on the plane at a distance z � 1 m from the SLM
lane. Simulations of the interference of the IBBs
nd the FBBs are presented in Figs. 7�a� and 7�b�,
espectively. In the experiment the interference
ringes were recorded by a CCD camera; they are
hown in Fig. 7�c�. The interference fringes from
� 4 through n � �4 are shown in Fig. 7�d�.
It can be seen from Fig. 7 that both interference

atterns have forklike fringes, which confirms the
xistence of helical azimuthal phase variations in
BBs and IBBs. For the IBBs it was proved that the
elical phase induced an orbital angular momentum.
his could provide an analogy with the FBBs. In
igs. 7�a� and 7�b� the brightest rings in both patterns
re composed of many petals, but one of the petals in
he FBB caused by the FBB’s fractional helical wave
ront is not observed clearly in the figure because of
he fractional Bessel amplitude of the fractional
eam.

Fig. 5. Schematic of the experimental setup.

ig. 6. Reconstructed FBB intensity patterns at several distances
from the SLM, n � 4.5: �a� z � 0.3 m, �b� z � 0.5 m, �c� z � 0.6
, �d� z � 1 m.
. Conclusions

n conclusion, we have shown experimentally the
ropagation of fractional Bessel beams, especially of
rder 4.5, by holographic means. We have also
hown that the reconstructed FBB not only is diffrac-
ion free but also maintains its helical phase wave
ront. Moreover, we demonstrated that the opening
lit in its concentric intensity rings is distinctly dif-
erent from that of the integer-order Bessel beams.

We have shown a clear and simple method of ob-
aining a FBB by using a single optical element. Ex-
erimental generation of the FBB has been shown to
e in good agreement with the simulation results.
The main use of a FBB can best be described as its

se as a dark optical trap for confining neutral at-
ms.5,6 Rhodes et al.5 have shown that the obstructed
uide, which creates artificial openings, increases
oupling efficiency. They also mentioned that
igher coupling efficiency into an obstructed
aguerre–Gaussian beam and a high-order Bessel
eam can be achieved, for instance, by dropping a
agneto-optic trap cloud under gravity into an

blique guide.
Hence it is not difficult for us to see the FBB’s

otential usefulness for trapping neutral atoms.
he openings from the FBB create a clear opening in
hollow beam with a diffractionless distance that is
ot easily attainable by other means. Hence this
BB can be a great alternative to the obstructed
uide of Rhodes et al.5
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